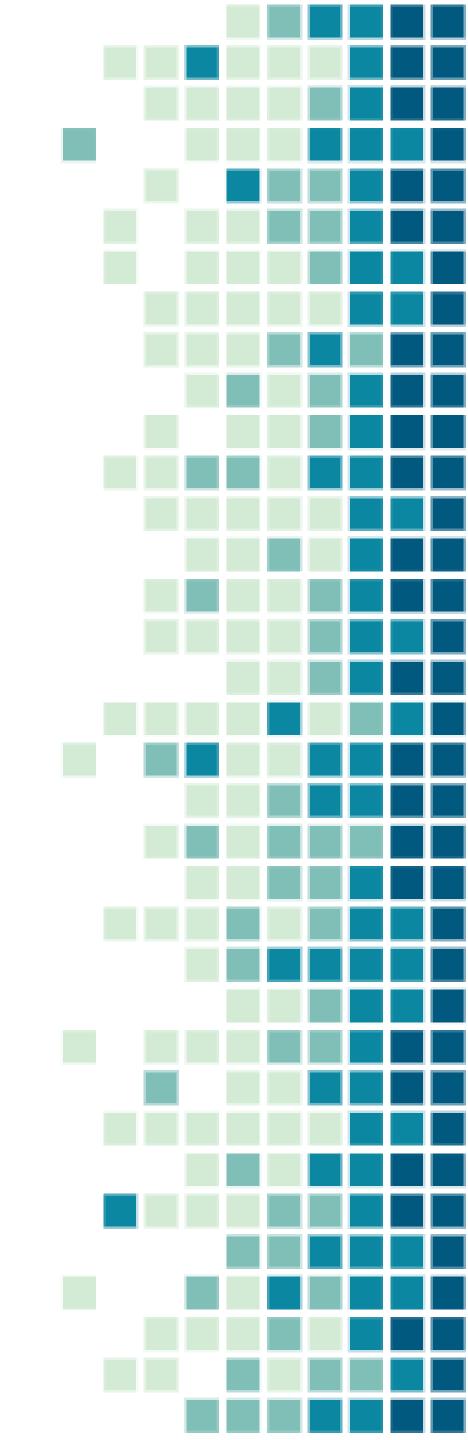
Analyzing Moving Average Models in Forecasting High-Volatility Stocks

Justin Chen

Methodology

Visualizations

Analysis

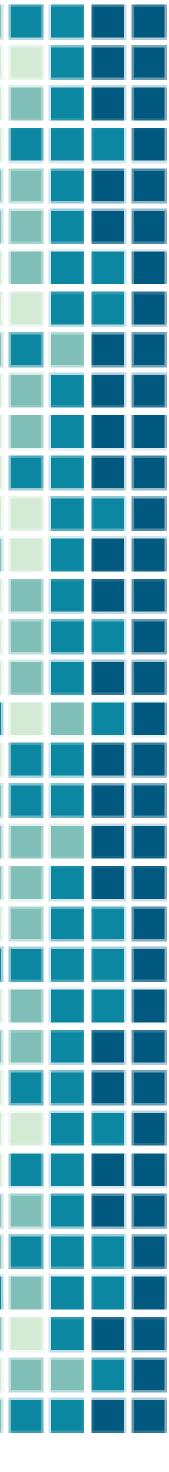


OVERVIEW

QUESTION: Will there be any statistically significant change in ARIMA's performance in forecasting stock prices based on their volatilities?

HYPOTHESIS: Yes, ARIMA will work better on forecasting stocks of low volatilities to an extent where it can be considered to be of statistical significance.

Analysis



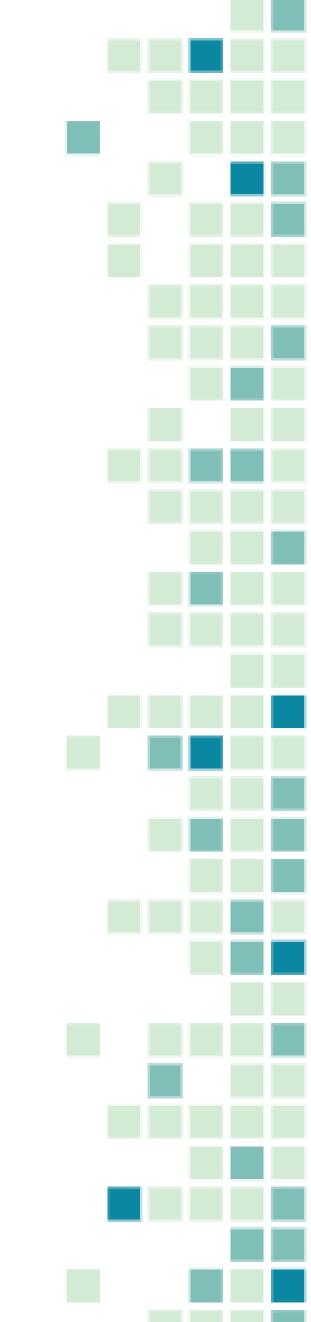
KEY TERMS

Volatility

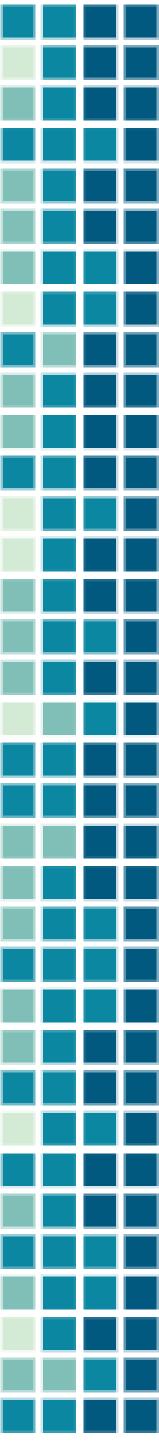
- Rate at which a stock price changes over time
- Measured in β , which is a relative indicator
- β greater than 1, more volatile than S&P 500

ARIMA

- AutoRegressive Integrated Moving Average
- Used to forecast, analyze or model time series
- Works through timelagging of moving averages

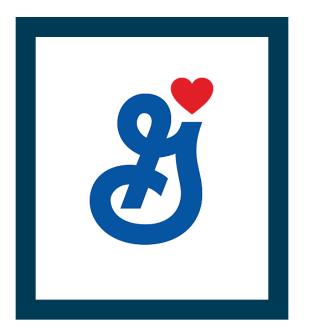


Analysis



AMD

- Computer chip producer based in California
- High volatility stock (β =1.95)

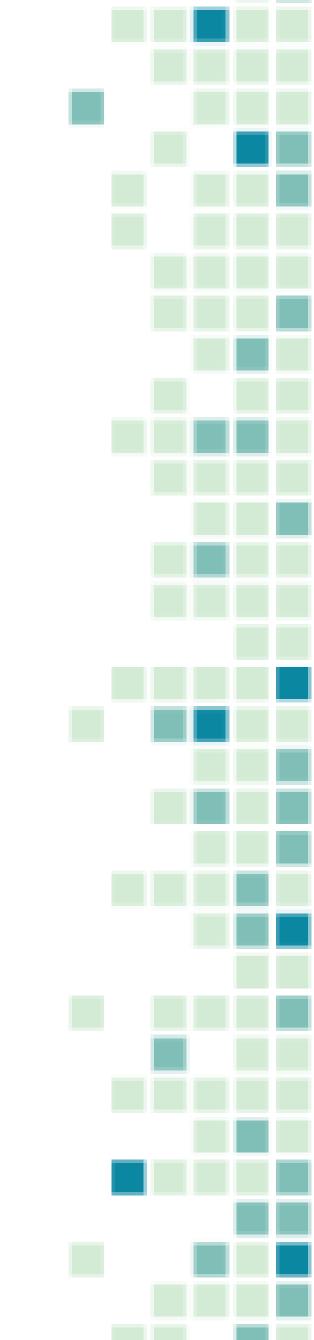


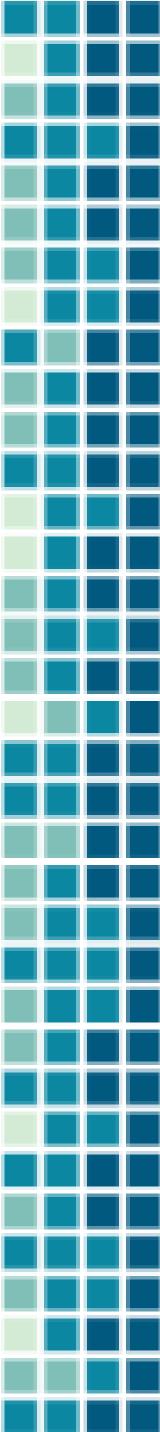
General Mills

- Food manufacturer based in Minneapolis
- Primarily produces breakfast cereals, but also snacks
- Low volatility stock (β =0.31)

COMPANY OVERVIEW

Produces consumer desktop chips such as CPUs and GPUS





DATASET SUMMARY

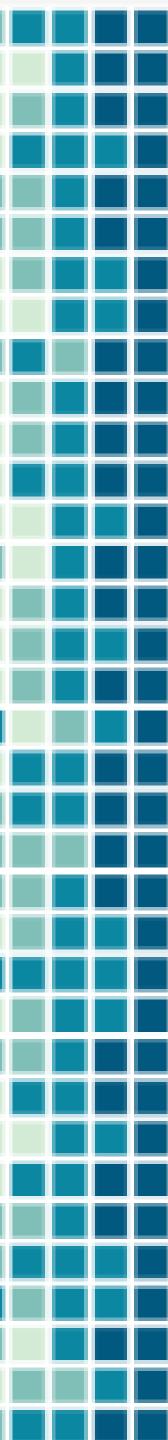
Daily Stock Prices

- Open, Close, High, Low, Adj Close, Volume
- Via Yahoo Finance

Daily info from 11/1/2021 to 11/1/2022

- No weekend or holiday info
- Indexed for lower load on machine

250 Rows | 7 Columns



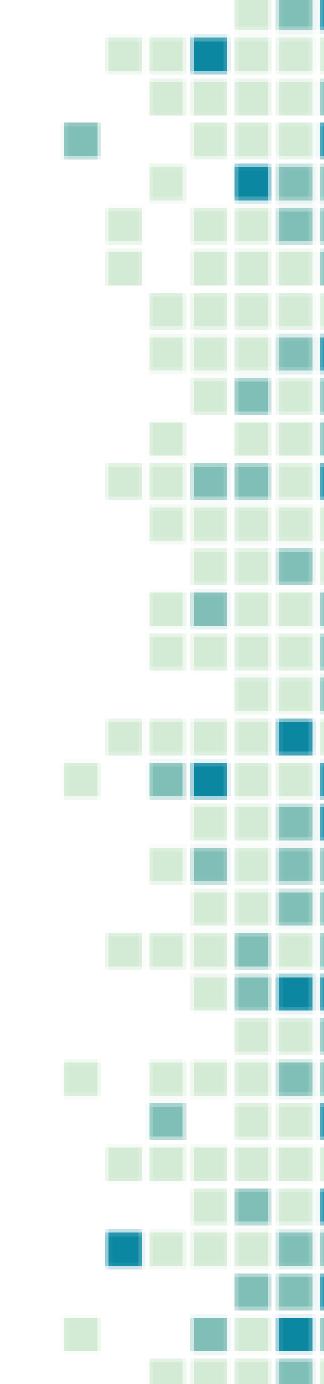
Returns

- Implemented via pct_change function
- Returns is a time series that ARIMA can forecast on

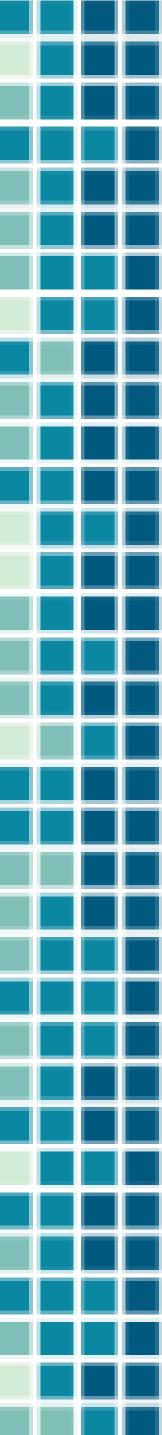
Testing Method

- Simple simulation with ARIMA for both stocks
- Parameter of time lag with highest autocorrelation
- Compare returns of both stocks

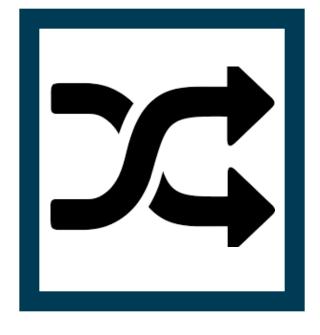
Primarily focusing on a change of Close Prices (Returns)



Analysis



SIMULATION DETAILS



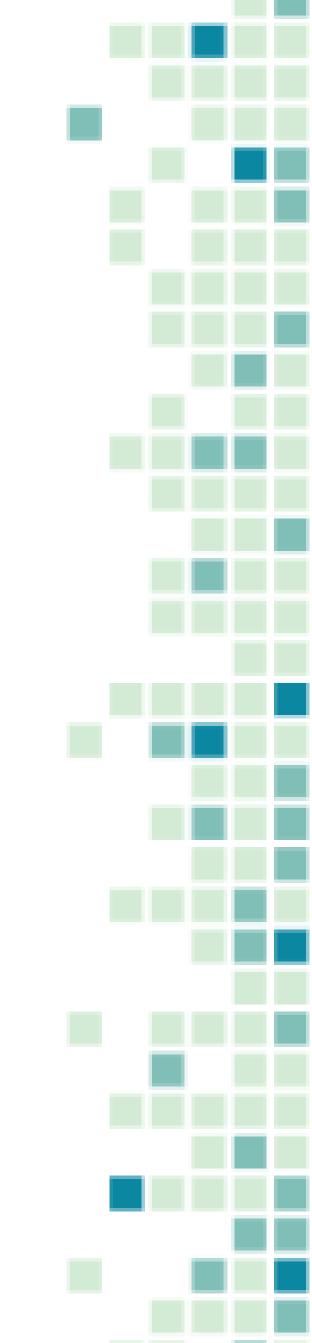
Simple Simulation

- A buyer has \$100

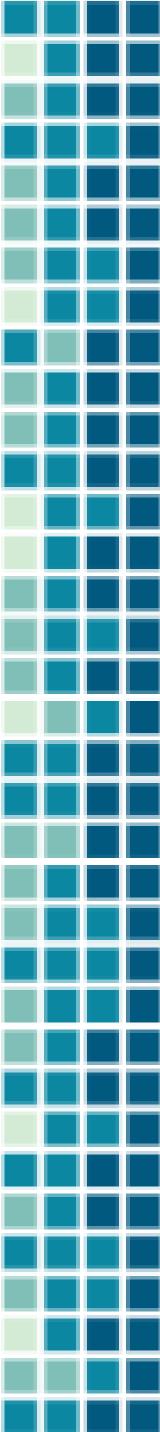
Assumptions

- The buyer will immediately sell
- The buyer is rational
- The time series is stationary

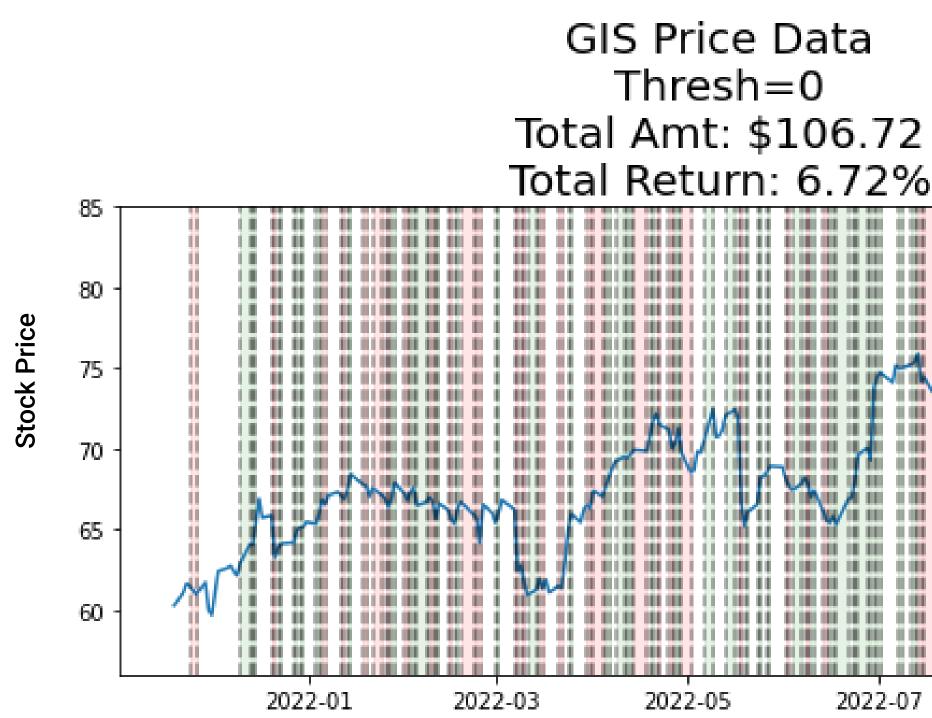
• Will buy when ARIMA predicts expected returns to be over 0 • Plots each trade and returns after the given time period



Analysis

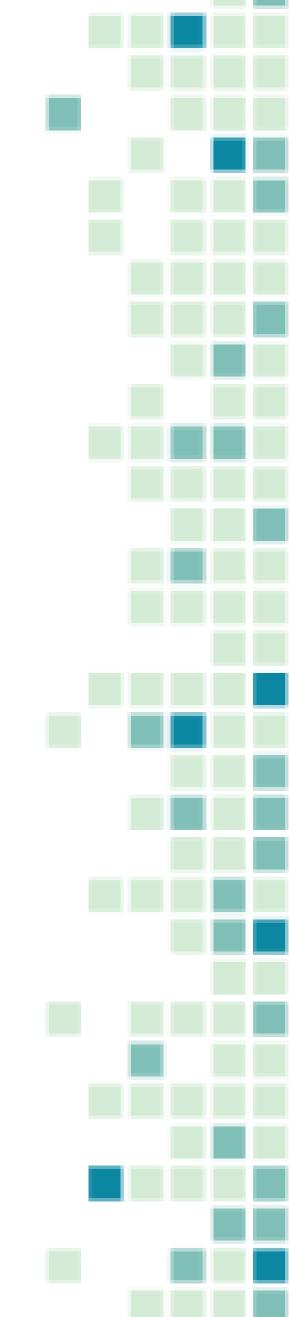


SIMULATION EXAMPLE

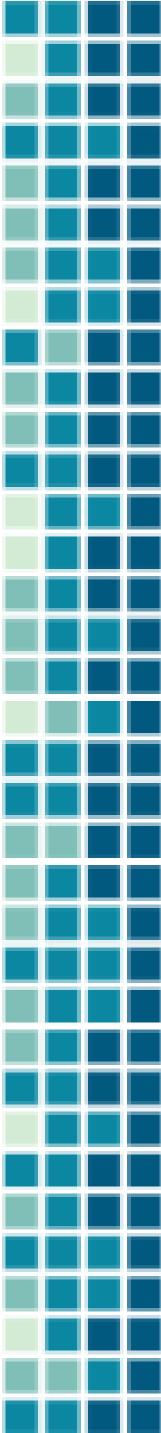


- Model of each trade that the simulation performs
- Red indicates a negative trade, green indicates a positive trade
- Given parameters: Time lag, threshold (0), and starting money of 100

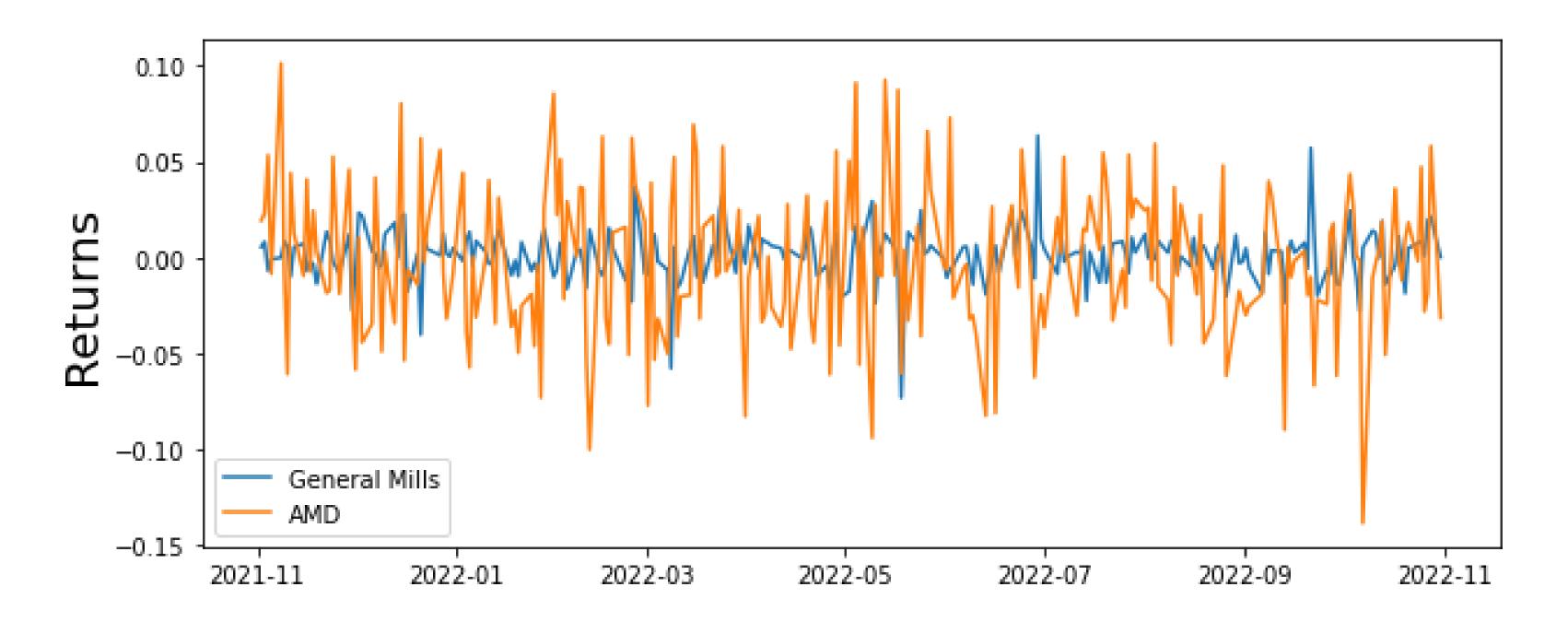
2022-07 2022-09 2022-11



Analysis

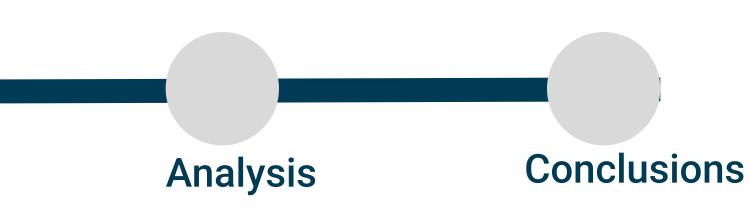


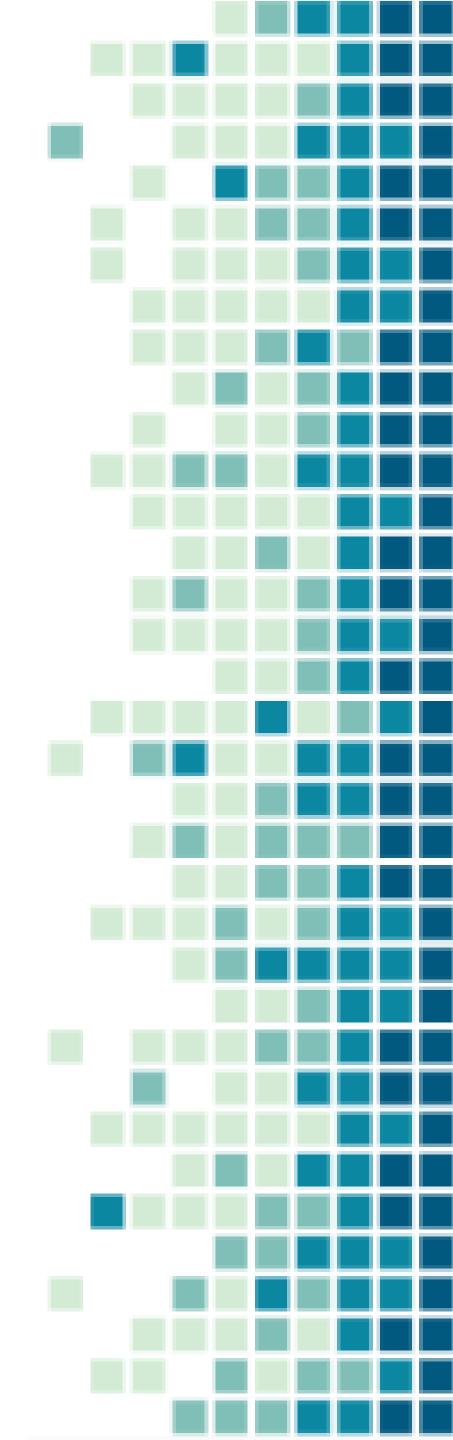
RETURNS



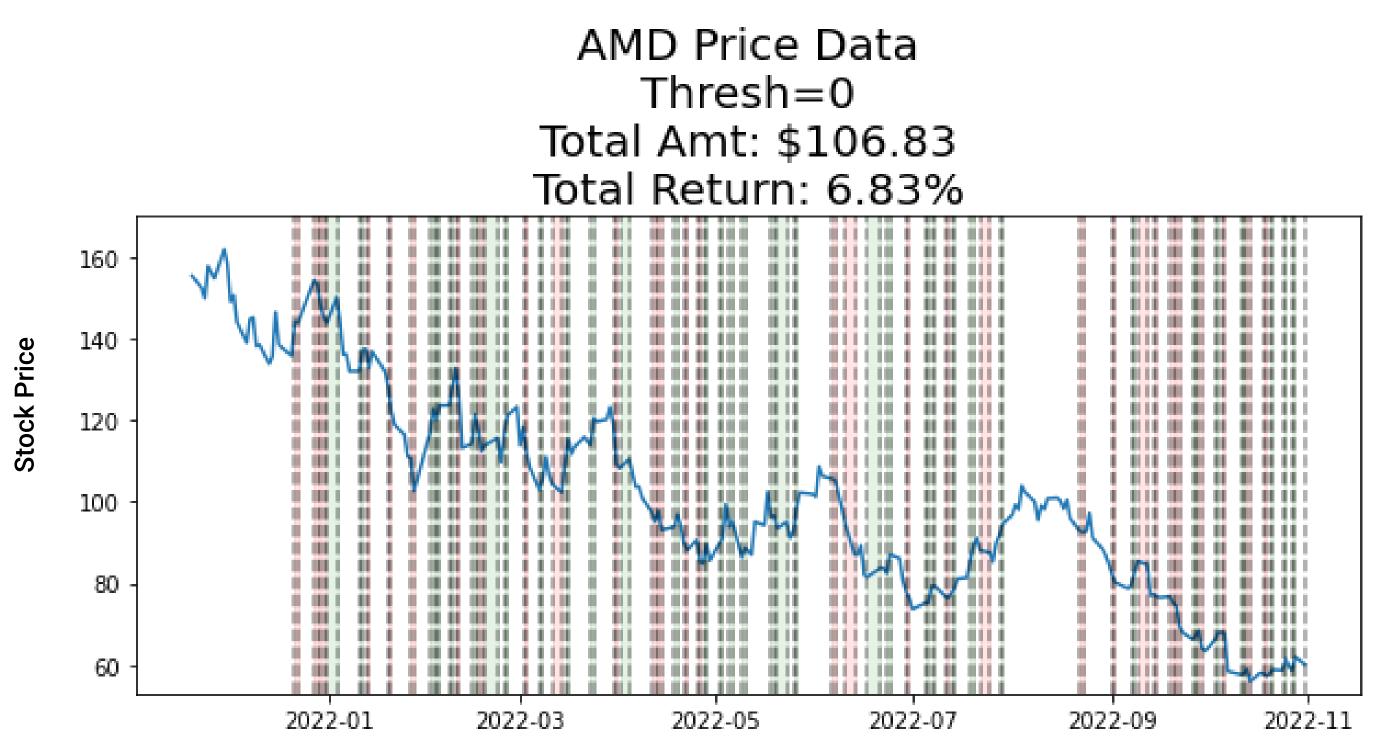
- AMD has far higher fluctuation compared to General Mills
 - Due to AMD's role as a tech manufacturer
 - Higher volatility market compared to food production

ared to General Mills facturer I to food production

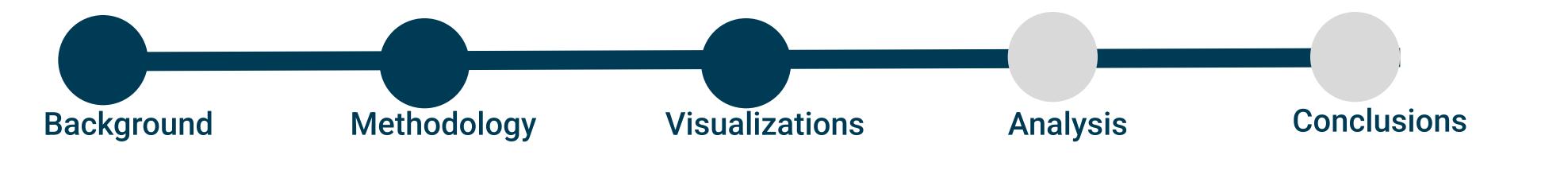




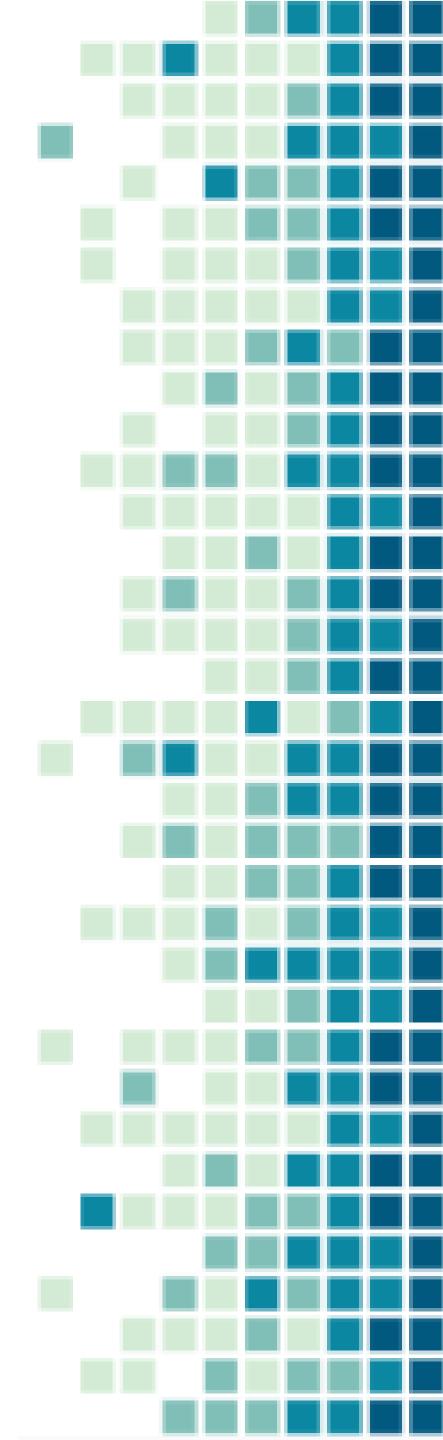
AMD SIMULATION



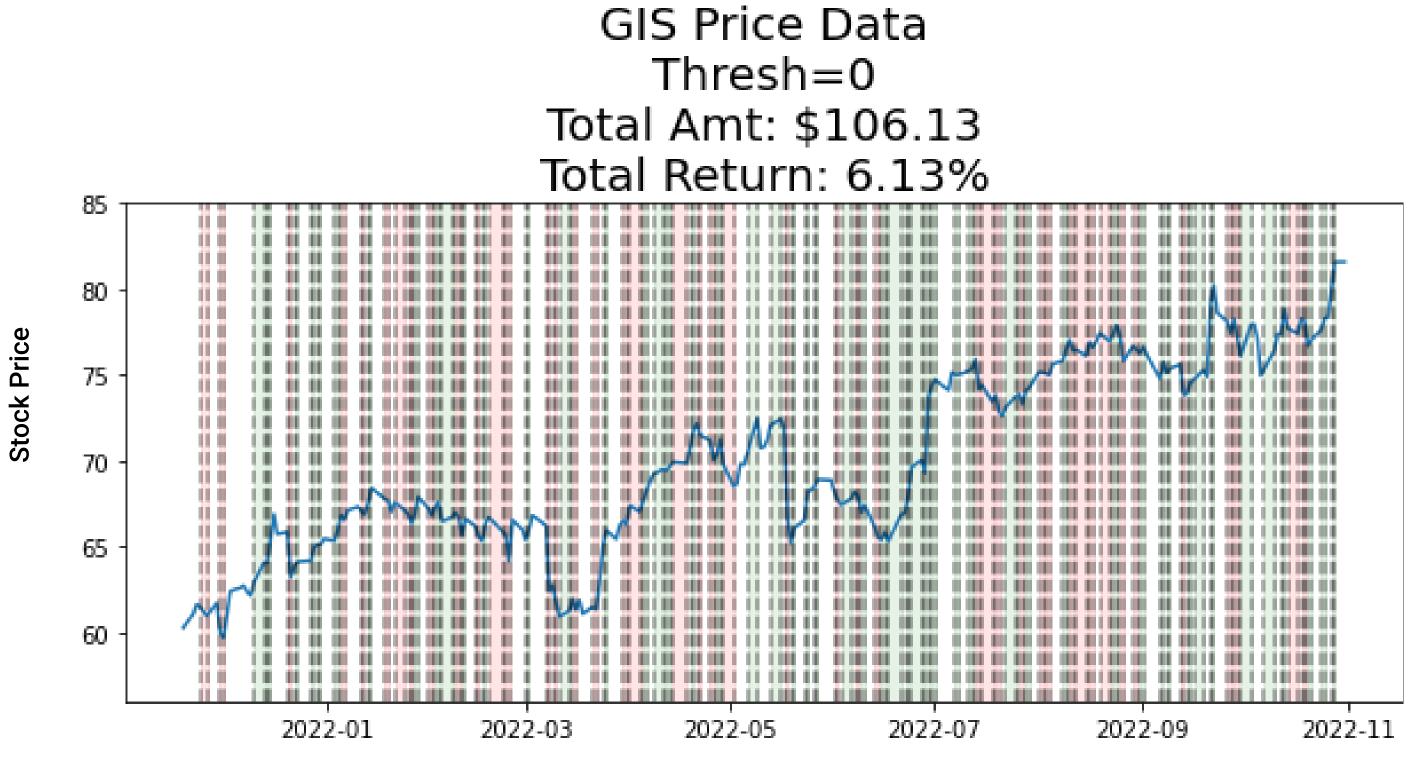
- Mix of negative and positive trades performed over the year
- Performs more accurately earlier in the year
- Implemented via a timelag of 21 days



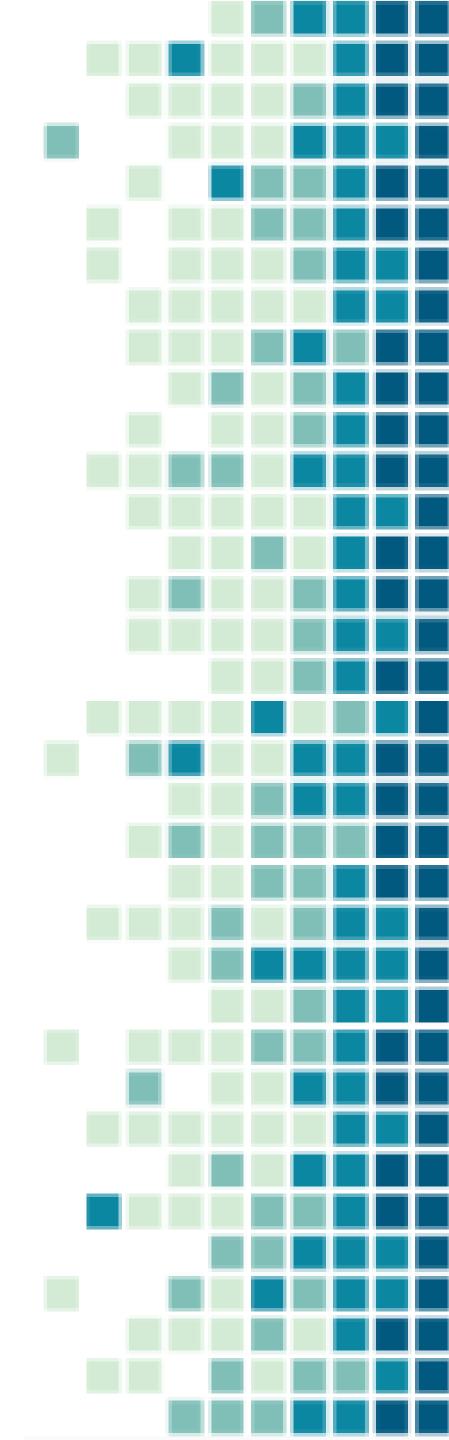
les performed over the year r in the year days



GIS SIMULATION

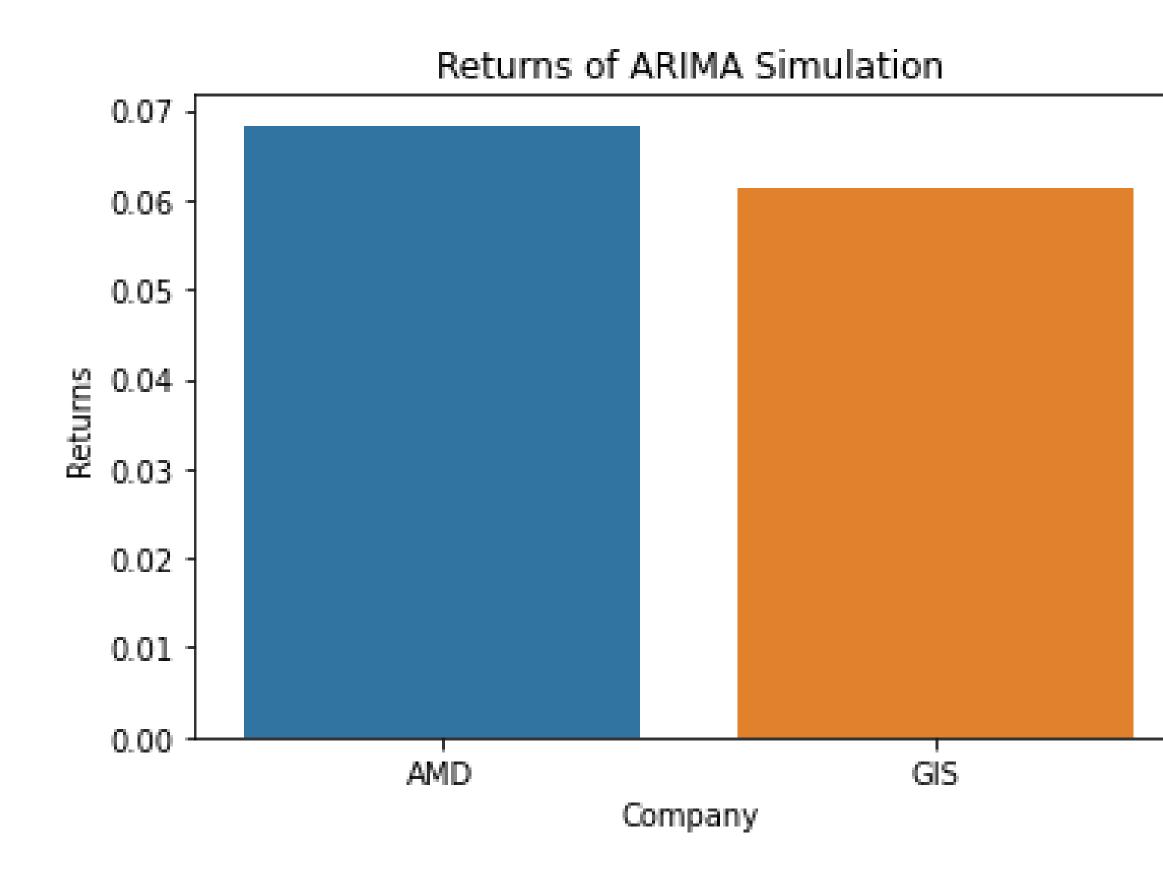


- Mix of negative and positive trades performed over the year
- Performs more accurately early/middle of the year
- Implemented via a timelag of 11 days

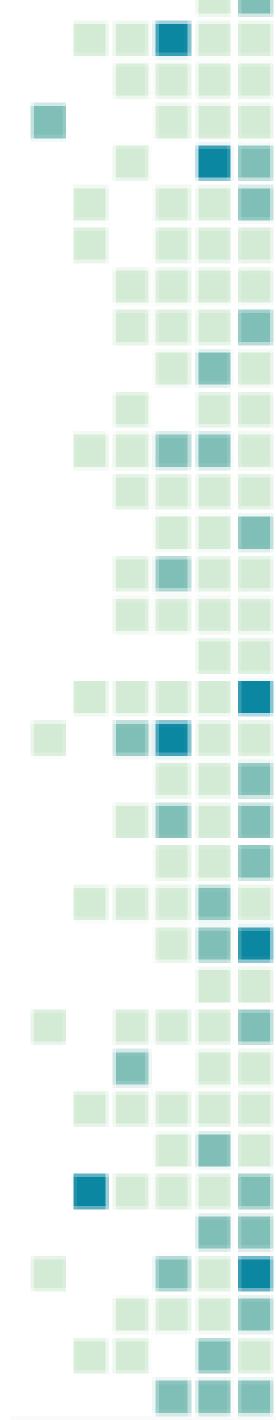


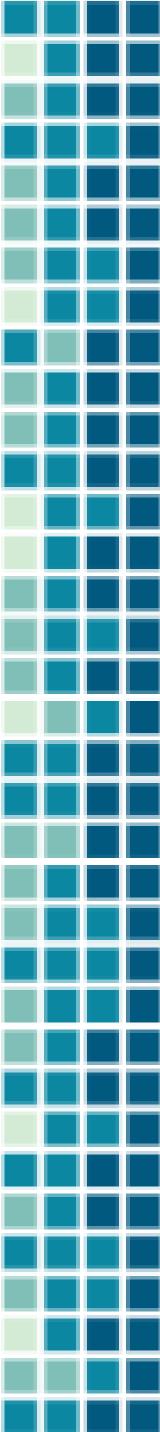
Analysis

COMPARING RETURNS

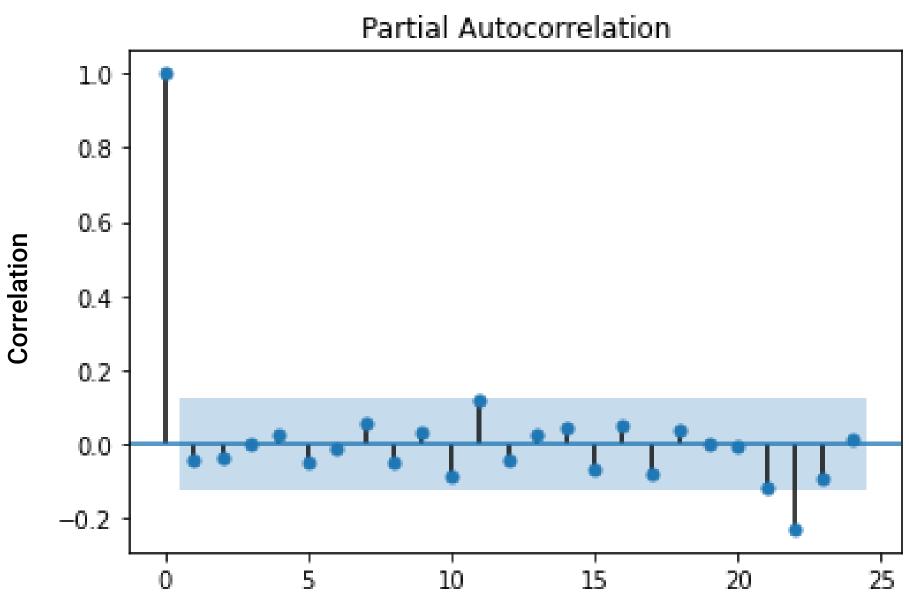


- AMD returns are slightly higher than GIS
- Indicates little/no correlation between ARIMA performance and returns
- Could have been accounted due to different timelags



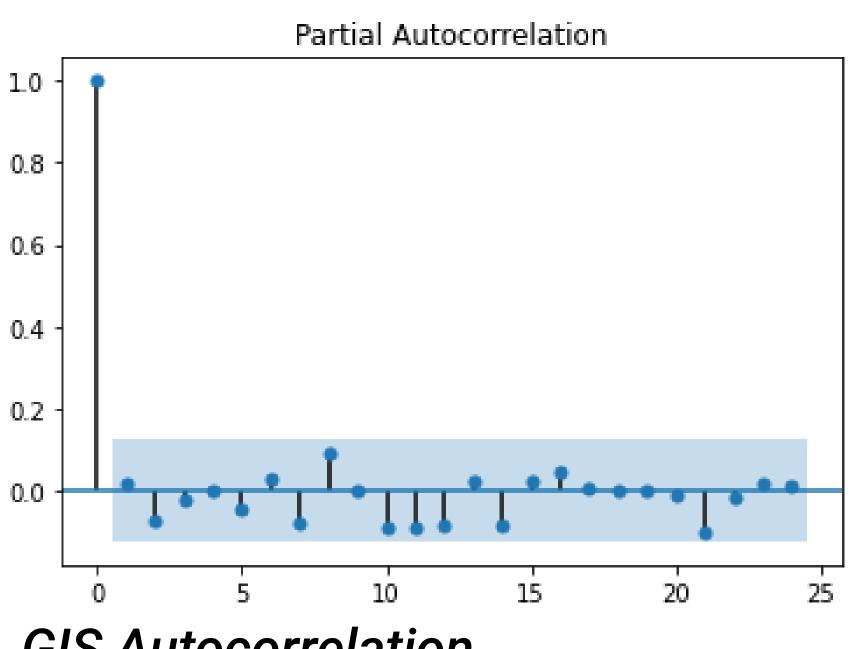


GENERAL OBSERVATIONS



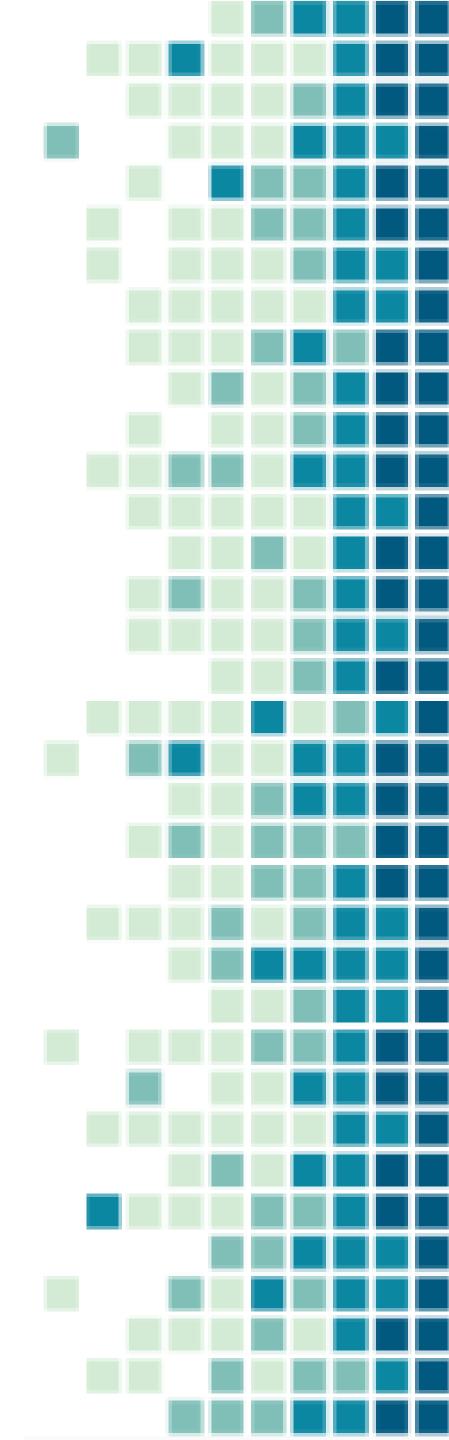
AMD Autocorrelation

- Autocorrelation indicates what timelag we should use in the model
- Higher volatility stocks required more timelag for accurate predictions
- Those high volatility stocks also had notably larger correlation values



GIS Autocorrelation

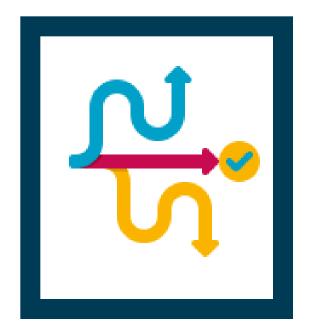
ag we should use in the model e timelag for accurate predictions notably larger correlation values



LIMITATIONS

Model Limitations

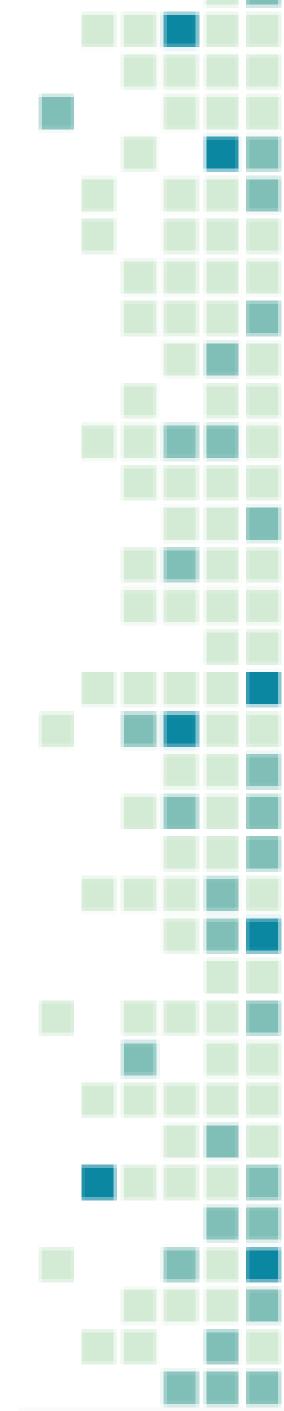
- Lack of Data Points (Possible Overfitting)
- Poorly optimized model

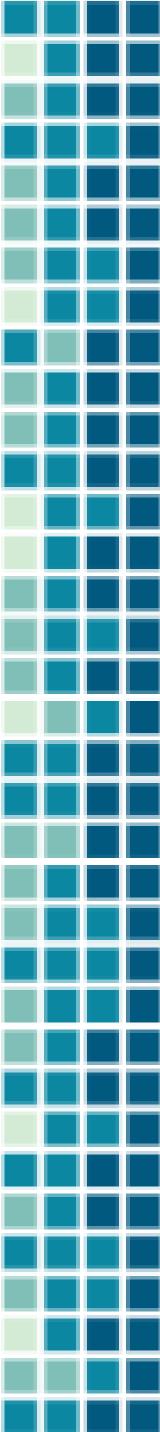


Simplification of Real-Life Observations Buyer is assumed to be rational and buys day to day • Lots of variables set constant

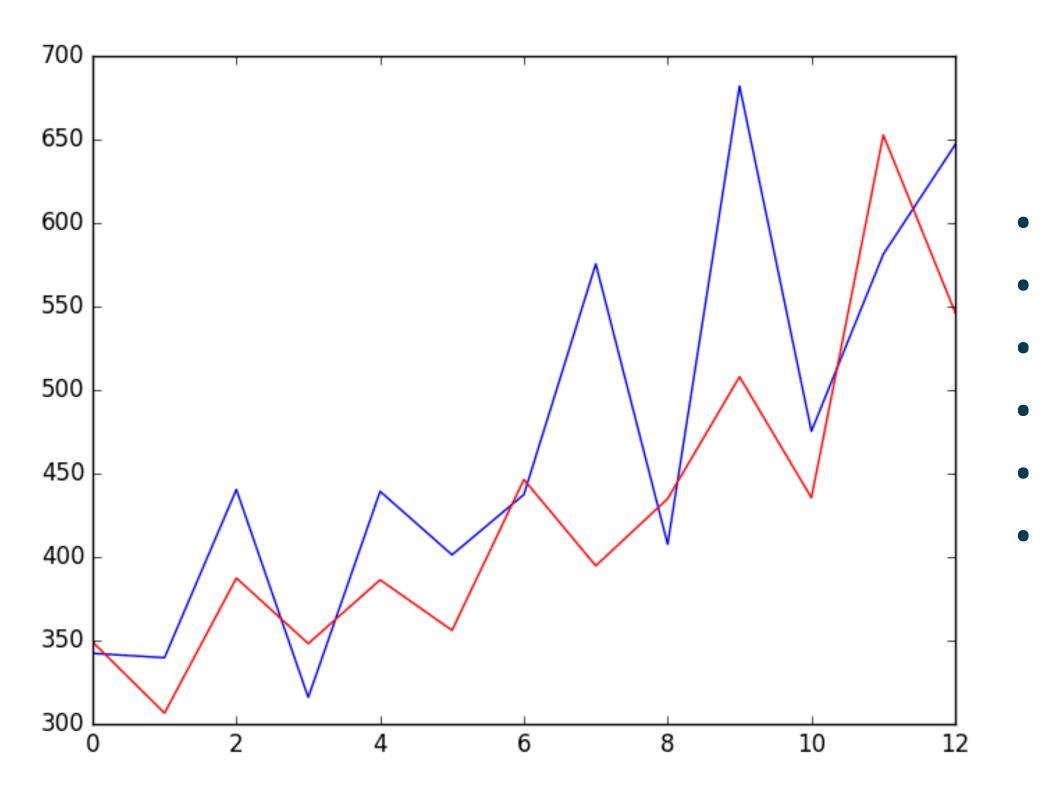
- Only \$100 (means incredibly low volume)

Not enough computing power (Conducted via Colab Pro)

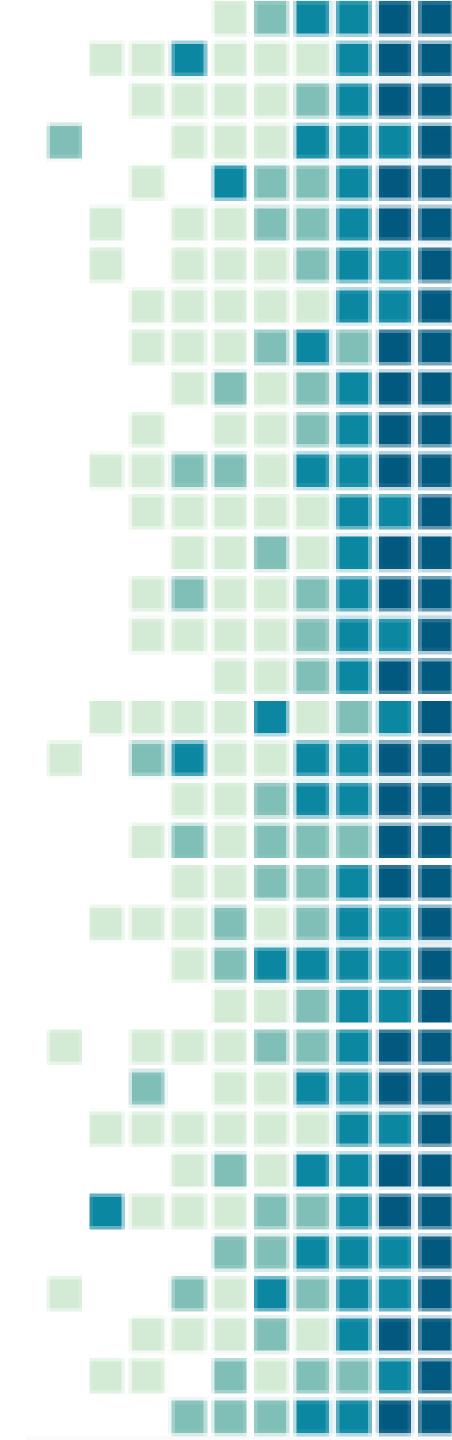




CONCLUSIONS



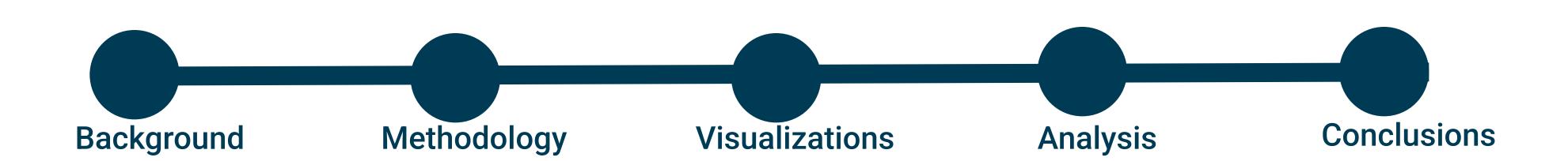
ARIMA is simple and efficient
Best works with stationary data
Minimizes high overfitting
Still captures relationships of data
Volatility plays small role
Not good for long-term forecasting



BUSINESS INSIGHTS

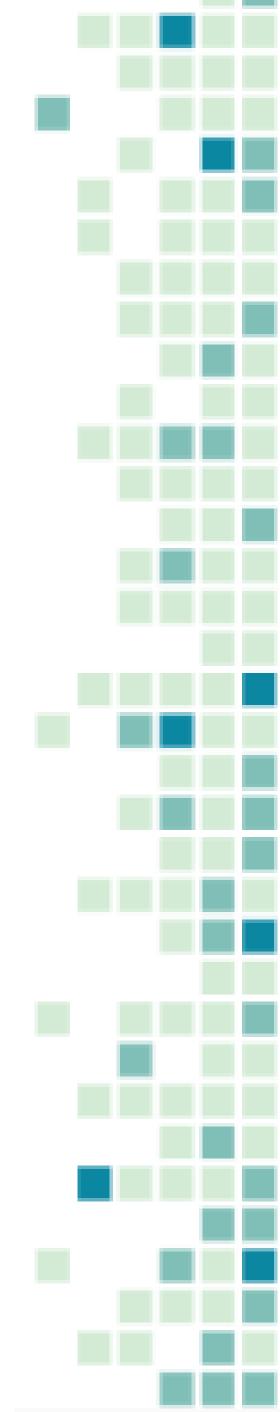
Use in the Business World

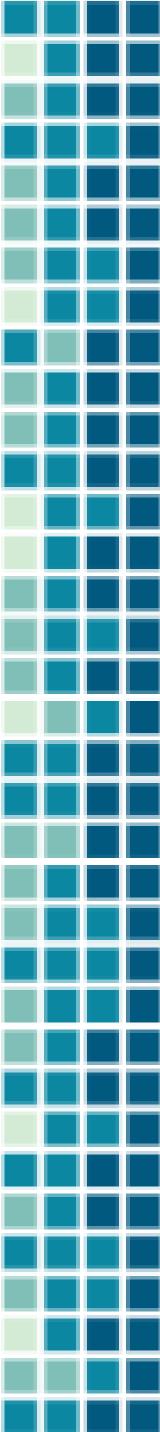
Stepping Stone Model



• Can help influence investing strategies via forecasts • Effective on most stationary series to a certain extent • Lots of potential in increasing accuracy of forecasts

 Used by banks such as Capital One to handle money Proper implementation can result in high accuracy forecasts • Fully fledged ARIMA models can model nonstationary series!





APPENDIX

run_simulation(returns, prices, 100, (p,0,0), 0, verbose=False)

Code snippet to run the simulation - p is the timelag (ARMA model)

- tickerSymbol = 'GIS' data = yf.Ticker(tickerSymbol)
- prices = data.history(start='2021-11-01', end='2022-11-01').Close returns = prices.pct_change().dropna()

Code snippet to load financial data and turn into returns vs prices

