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What is Healthcare Attrition?

When an employee leaves the company through any method, including voluntary resignations,
layoffs, failure to return from a leave of albsence, or even iliness or death
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Why is it important?

According to the 2022 NSI

National Healthcare Retention & @ Medication Errors
RN Staffing Report, the average

hospital turnover rate in 2021 was

2 5’9% @ Hospital Readmission

revealing a 6.4% increase over the
prior year which was approx 19.5% @ Quality of Care
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Intro to Dataset

Example Features
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Advantages Disadvantages

High Level of Detail (35
Features)

Includes a Variety of
Demographics

IBM Watson: Reputable natural
language processing machine

Introduction Dataset Exploration




EDA Of Age, Distance from Home, and Marital Status

) 4 )

: Probability Density (KDE) of Age Distance from Home vs Marital Status (Violin Plot)
Ages ~ 18-35 have the highest rates Higher distance from home results
of Attrition due to opportunities for in greater attrition
pivoting + Mean (Single): 10.614
+ Mean (Yes): 30.899 yrs + Mean (Married): 13.361
+ Mean (No): 37.670 yrs - Mean (Divorced): 11.542
- y - y
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Background History of Employees Analysis

EducationField

Single -

Married -

MaritalStatus

Divorced -

Life Sciences -
Other -

Medical 1
Marketing -
Technical Degree -

Human Resources -

Female -

Gender

Male -

0 10 20 30 0.0 2.5 5.0 7.5 2 -
DistanceFromHome NumCompaniesWorked Education

Attrition
Bl No
Yes
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Observations:
1. Number of Companies Worked

- Mean (Yes): 2.647 & Mean (No): 2.779
2. Gender

« 60% Male & 40% Female
3. Education Level

« Mean (Yes): 2.798 & Mean (No): 2.922
4. Educational Field

« Roughly equal across all departments

Insight: Each of these features show minimal effect on
overall employee attrition based on the dataset tested as
the average values are relatively similar.
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Analysis of Work Engagement based on Job Role

f \ Heatmap of JobRole and Department against Ratings (scale of 1 to 10)

Features: Job Involvement, Job Satisfaction, i Cardicogy
Environment Satisfaction, Relationship pamin ratemity
Satisfaction, Work Life Balance, Performance

Admin-Neurology

Administrative-Cardiology

Rating, Job Level sty _,.
\ J -
Observations: e T :
1. Environment, Relationship, and Job
Satisfaction have minimal difference in ) other Cardiology 5
means ther matermity 4
2. Job Roles of Nurses & Others associated oertieurioey
with low Job Leve B— |
3. Association between Lower Means
(below 5) & Low Attrition
& 2
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Analysis of Work Engagement based on Job Role

Heatmap of Attrition based on Ratings

N
Features: Job Involvement, Job Satisfaction,

Environment Satisfaction, Relationship
Satisfaction, Work Life Balance, Performmance
Rating, Job Level

-6.0

6.3

)
Attrition

Observations:

1. Largest difference in means of Job Level
(1.4) between Attrition categories

2. No difference in means within
Performance Ratings

3. Mild difference (~0.5-0.7) seen in
Environment Satisfaction, Job
Involvement, and Job Satisfaction
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Analysis of Work Compensation on Attrition

4 o )
Distribution of Monthly Income ($)
250 Attrition
e No
Yes
200
= 150
S
100
50
0 - |||
2500 5000 7500 10000 12500 15000 17500 20000
Monthlylncome
Lower Monthly Income directly correlates
to higher chance of Attrition
+ Mean (Yes): $4,024.246
. + Mean (No): $6,852.302 )
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g Distribution of % Salary Hike
200 ﬂriti:;
175 Yes
150
= 125
é 100
6]
o0
25
0
’ " E&mentézlawHiI’iﬂ ” -
Lower Percent Salary Hike doesn’t signal
higher chance of Attrition
« Mean (Yes): 15.226%
~ * Mean (No): 15.193% )
C C O
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Column Selection &
Splitting the Data

Over Time

Age

Distance From Home

Marita

Status

Monthly Income

Job Involvement

Environment Satisfaction

Job Satisfaction
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Prediction Model Overview

Training/Testing Data
to Optimize Model

N r N
Split data into Training & Test
Sets & Tested different models
« Model Accuracy = 0.9107
 Precision Score = 0.6818
Confusion Matrix
y \ y
Dataset Exploration Model

Model Finalization &
Pruning

« Decreased number of
features that were looked
at (to prevent overfitting)

« Optimized tree depth = 3
 Limitations

« Model Accuracy

- Underfitting
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Unpruned Decision Tree

X[0] <= 34.5
gini =0.47
samples = 77
value = [48, 29]

'

X[2] <= 3488.5 X[9]<=0.5
gini = 0.463 gini = 0.397
samples = 22 samples = 55
value = [8, 14] value = [40, 15] \
=00 | [ Xz FURT o
samp_es . samples = 19 samples = 41 samples = 14
- N value = [3, 0] value = [5, 14] value = [34, 7] value = [6, 8] \
ex) X[0] = Age, Gini = 0.47, Samples = 77, MZe | [en-o0 e geo] [ It
samples = 18 \?;Teplf?f (1}] samples =5 samples = 36 \?;Tepta?oz 56] samples = 8
VC] I ue —_ [ 48, 2 9 ] Vi';e = [4, 14] = value = [2, 3] value 1[32, 4]\ =1 ValueI 6, 2]
 Lower Gini score: Lower chance of X[7] <=05 \g‘imzo_o gini:O_o‘/ gimlzo_o X[0]<=360 | | X@3l<=25 X[1] <= zo.s\‘gmizo_o
. ege . sga'r';'pzleg‘is? 1 samples = 7 samples = 3 samples = 2 kg pzle% 1=3§8 e ;lgf:?% 396'1?1'1328'4:% samples = 5
misclassification value=[4,7] | vaue=[07]] |value=[0,3] | [value=[2,0] | | aue=(26,2]| |value=[6 2] value =[1,2] | |vaue=15 0]
. ~ e N ~N
« Samples: # of employees in that category
» Value: Tells how many values fall into each
category [No Attrition (0), Attrition (1) ]
y,
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Final Pruned Decision Tree Model

-

Cluster I:
« Employees who work overtime less than
half the time, younger than 31.5 & 21.5
- Those who are working overtime
(regardless of how much) and younger
may find it easier to pivot and are more
likely to quit

entropy = 0.999
samples = 25
value = [12, 13]
class =1
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Monthlylncome <= 2929.0\

entropy = 0.89
samples = 374
value = [259, 115]
class =0

i

Joblnvolvement <= 2.5‘\
entropy = 0.931
samples = 101

(

value = [35, 66]
entropy = 1.0
samples = 64
value = [32, 32]
class =0

Model

Cluster 2:

« Employees who work overtime less than half
the time, have a monthly income of less than
$2929, and are less involved in their job

- Making less money and not being actively
involved may cause employees to quit in
search of more fulfilling, higher paying roles

entropy = 0.956
samples = 77
value = [48, 29]
class =0
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Limitations

Loss of Prediction Model
Accuracy

Unstable Nature of Lack of Various
Decision Tree Datasets
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Key Insights

People of younger ages are more likely to leave the workplace, especially those with less
years working in the hospital

Working overtime is a common factor in almost all attrition clusters as it reduces work
life balance and overall satisfaction

Given increasing inflation and cost of living, a lower monthly income has a high
correlation with rising levels of attrition

Educational background doesn’t have any noticeable effect or correlation with attrition
& there are equal amounts of attrition across all education levels
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Business Recommendations

N

Improve Recruiting &
Onboarding:
Introducing sign on
bonuses, tangible
benefits, wellness perks,
and well-organized
onboarding and training
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Build Community
Engagement:
Establish positive hospital
culture, promote work life
balance, and encourage
open communication
between doctors & nurses

‘ ‘

Exploration Model

Invest in Employee
Engagement:
Organizing mentoring
programs and require
Continuing Medical
Education (CME) &
Professional Dev (CPD)
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Decision Tree Classifier

import graphviz

from sklearn.tree import DecisionTreeClassifier

from sklearn.model selection import train test split
from sklearn import metrics

dot data = tree.export graphviz(model, out file=None)
graph = graphviz.Source(dot data)
graph.render("treediagram"”", view=True)

Post-pruning

dot data = StringIO()
feature names = sig factors

export_graphviz(clf, out_file = dot_data, filled = True, feature_ names

graph = pydotplus.graph from dot data(dot_data.getvalue())
print (feature names)

graph.write png('tree.png')

Image(graph.create png())
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Splitting Data & Testing Models

y = target
X train, X test, y train, y test = train test split(X, y, random state = 1, train size

depths = [3,4,6,8,10,12,20]

for d in depths:

model = DecisionTreeClassifier (max depth = d, random state = 1)
model.fit(X train, y train)

print('Max depth of tree is', model.tree_.max_depth)

y_predict = model.predict (X test)

score = accuracy_ score(y test, y predict)

print( 'Model accuracy: {0:0.4f}'.format(score))

cm = confusion matrix(y_ test, y predict)

TP = cm[1][1]

FP = cm[0][1]

ps = TP/ (TP+FP)

print('Precision score: {0:0.4f}'. format(ps))
print('Confusion matrix:\n', cm)

print ()
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