

NEWS

Sentiment Analysis on News Headlines to Predict Stock Market Fluctuations

> Frepared by: Jahnavi Yandapall

Exploration

Analysis

Investments over the Years

In 1989, 32% of US families invested in the stock market

In 2019, 53% of US families invested in the stock market

Majority of investments are from retirement accounts

Exploration

According to The Federal **Reserve's Survey of Consumer** Finances, 30% of households had no wealth in 2016. Although there have been an increase in the number of families investing in the stock market, fewer families have been able to secure wealth.

Insiahts

Analysis

Sentiment Analysis

Sentiment analysis (opinion mining) is a **natural language processing technique** that ascertains whether the language in a text is **positive**, **negative**, **or neutral**.

Types: rule-based, automatic, hybrid

Dataset: Reddit

Dataset: Reddit WorldNews Channel (r/worldnews) Timeline: June 8, 2008 to July 1, 2016 Information: Daily news headlines (Top 25 daily headlines)

Dataset: DJIA

Dataset: Dow Jones Industrial Average (DJIA) Timeline: June 8, 2008 to July 1, 2016 Information: Prices of the DJIA

Polarity and Subjectivity

Subjectivity

Polarity

Normal Distribution: Unimodal, No Cluster, No Outliers

Exploration

Introduction

Statistics

For Labels 0 and 1, the volume of stocks traded are uniformly distributed. The volume traded is slightly lower with Label 1, which could be attributed to retainment of stocks due to a positive mindset.

Analysis

Insights

Linear Regression

There is a large cluster with both Labels 0 and 1 to the leftmost negative value of close to -1.00. Both labels showing a cluster around the same negative value suggests that sentiment may not play a significant impact on the fluctuation of the stocks.

Linear Regression

Analysis: Linear Regression

Equation

Coefficient: -14.892

The negative value suggests that an increase in sentiment leads to a decrease in the DJIA.

Introduction

Correlation

The coefficient of determination (r^2) suggests that **0.044%** of the variation in **stock prices** can be determined by the **sentiment score**.

Exploration

Mean Squared Error

MSE: 19926.4650

The large error indicates the model's incorrectedness in predicting most of the fluctuation in prices.

Insights

Analysis

Analysis: Linear Regression

Conclusion

Since the coefficient of determination is low at 0.044% and the MSE is high, there is insufficient evidence to conclude existence of a strong linear relationship between sentiment scores and changes in stock prices.

Next Steps

Since a linear regression model **cannot** accurately predict the relationship, the data will be **trained** and **tested** to create a linear discriminant analysis prediction model.

Linear Discriminant Analysis

Exploration

Model

The dataset was split into training and testing data (80:20 ratio). Once the fit of the model was created, the accuracy of the predictions was calculated to be at 84%.

Introduction

	precision	recall	f1-score	support
	0.86		0.83	
	0.82	0.88	0.85	205
accuracy			0.84	398
macro avg	0.84	0.84	. 0.84	398
weighted avg	0.84	0.84	0.84	398

Linear Discriminant Analysis

Confusion Matrix

The confusion matrix describes the number of times the prediction model guesses wrong for each label. Evidently, the wrong guesses are rather low for both labels.

Testing the Model

Dataset

	Label	Open	High	Low	Volume	Polarity	Subjectivity	compound	positive	negative	neutral
		11781.700195	11782.349609	11601.519531	173590000	-0.044302	0.536234		0.056		
1985	1	17190.509766	17409.720703	17190.509766	112190000	0.046560	0.352649	-0.9571	0.102	0.132	0.767

Limitations

Confounding Variables/Influences

The stock market is **not solely affected** by news articles and headlines, which **reduces the impact** of the prediction model. Others factors can include interest rates, politics, and inflation.

Components of Model

The model **requires many components** that may not always be available when investors make trading decisions. **Removing** such factors **reduces the accuracy of the model**, however.

Conclusion

A linear regression model does not accurately predict the fluctuation in stock prices based on sentiment as evident from the low coefficient of determination. However, creating a linear discriminant model is rather accurate at 84% in predicting the direction of the fluctuation in stock prices.

By providing the model the relevant information, **investors can more informatively** make trading decisions after seeing the publication of certain news. The model is restricted to solely providing the **direction of the movement** and not the **extent**, so conclusions cannot be made **too broad**.

Appendix: Cleaning the Data

```
Headline = []
for topnews in range(0, len(MergedData.index)):
    Headline.append(" ".join(str(x) for x in MergedData.iloc[topnews, 2:27]))
Cleaned Headline = []
for i in range(0, len(Headline)):
  Cleaned Headline.append(re.sub("b'", '', Headline[i]))
  Cleaned Headline[i] = re.sub('b"', '', Cleaned Headline[i])
  Cleaned Headline[i] = re.sub("\'", '', Cleaned Headline[i])
MergedData['Daily News'] = Cleaned Headline
MergedData
```


Appendix: Sentiment Analysis

def polarity_score(text):
 return TextBlob(text).sentiment.polarity

#Obtaining the Subjectivity Scores
def subjectivity_score(text):
 return TextBlob(text).sentiment.subjectivity

MergedData['Polarity'] = MergedData['Daily News'].apply(polarity_score)
MergedData['Subjectivity'] = MergedData['Daily News'].apply(subjectivity_score)
MergedData

Appendix: Sentiment Analysis

compound = []
pos = []
neg = []
neg = []
neu = []
stA = 0
for i in range (0, len(MergedData['Daily News'])):
 StA = getStA(MergedData['Daily News'][i])
 compound append(StA['Compund'])
 pos.append(StA['ros'])
 neg.append(StA['ros'])
 neg.append(StA['ros'])

MergedData['compound'] = compound MergedData['positive'] = pos MergedData['negative'] = neg MergedData['neutral'] = neu

MergedData

Exploration

Insights

Appendix: Linear Regression

SentimentScore = ['Sentiment']

```
X = Data[SentimentScore]
```

y = Data.Change

linreg = LinearRegression()
linreg.fit(X, y)

```
# coefficents
print("The y intercept: ", linreg.intercept_)
print("The single coefficient:", list(zip(SentimentScore,linreg.coef_)))
```

r^2

```
y_pred = linreg.predict(X)
print("R^2: ", metrics.r2_score(y, y_pred))
```

Evaluate MSE

print("MSE: ", metrics.mean_squared_error(y, y_pred))

Appendix: Data Set for Model

	Label	Open	Close	High		Volume	Polarity	Subjectivity	Sentiment	positive	negative	neutral	Change
0		11432.089844		11759.959961	11388.040039	212830000	-0.048568		-0.9982				302.230468
1		11729.669922	11782.349609	11867.110352	11675.530273	183190000	0.121956	0.374806	-0.9858				52.679687
2				11782.349609		173590000		0.536234					-139.230468
3		11632.809570	11532.959961	11633.780273	11453.339844	182550000	0.011398	0.364021	-0.9809				-99.849609
4			11615.929688	11718.280273	11450.889648	159790000			-0.9682				83.859376
1984													
1985		17190.509766	17409.720703	17409.720703	17190.509766	112190000	0.046560	0.352649					219.210937
1986			17694.679688			106380000		0.389617					
1987		17712.759766	17929.990234	17930.609375	17711.800781	133030000		0.382566					217.230468
1988				18002.380859			-0.035458						
1989 rows x 13 columns													

Appendix: Creating the Model

A = Testing

B = np.array(NewDataSet['Label'])

#Spitting the data into testing and training groups
A_train, A_test, B_train, B_test = train_test_split(A, B, test_size=0.2, random_state=0)

```
#Creating the model
Model = LinearDiscriminantAnalysis().fit(A_train, B_train)
```

#Testing the model
PredictFluctuation = Model.predict(A_test)
PredictFluctuation

print(classification_report(B_test, PredictFluctuation))

